Integrating JavaScript Language Features into
Smalltalk

Anton Gulenko

Hasso Plattner Institute, University of Potsdam, Germany
anton.gulenko@student.hpi.uni-potsdam.de

Abstract. The preferred way to develop web applications is to use a
framework and a single programming language. Client-side functionality
needs to be expressed in JavaScript, which is the widest supported script-
ing language of web browsers. In order to develop the client-side of the
application in the same language as the server, it is necessary to expose
the language features and libraries of JavaScript in this host language.
This has to be done on a syntactical, as well as semantical level to use
the full extent of JavaScript without writing or generating wrappers for
libraries.

We chose Smalltalk as host language and map JavaScript concepts and
features to equivalent or similar Smalltalk-counterparts. This way we ex-
pose the full client-side functionality in Smalltalk code. The presented
ideas are implemented in Orca, a framework for web application devel-
opment. We evaluate our solution and find it to produce expressive and
comprehensive code while offering the full extent of JavaScript’s client-
side functionality.

Keywords: Smalltalk, JavaScript, programming languages, mapping lan-
guage features

1 Introduction

Developing a web application includes development of the client-side, as well as
the server-side. Both sides have to provide full functionality and include impor-
tant parts of an application. The client-side tries to deliver a rich and visually
appealing experience for the user, while the server-side of the application can
handle many other aspects such as persistence of application data, business logic
or management tasks between several clients.

Both sides need to be programmed in an appropriate programming language
with full expresiveness for all tasks respectively. While the choice for the client-
side functionality is mostly tied to JavaScript[8], the server-side language can be
chosen freely as long as appropriate server functionality is provided.

Without a solution to express the client-side functionality in the server-side
language, developers have to program web applications using two languages.
Using two languages can be less productive for several reasons. First of all,
developers have to learn both languages. This includes the syntax, the standard

library and the developer tools. Maintaining this knowledge can be a difficult
task. Using multiple technologies also tends to produce expert knowledge and
split the team into groups. As the code base contains multiple languages, it
becomes harder to maintain than a homogenous code base. From the perspective
of programmers, it can be difficult to exchange data between the two languages;
the programming models don’t always map cleanly onto each other.

We solve the two-language problem by choosing the server-side language
and writing both parts of the application in that language. We chose Squeak
Smalltalk[11] for this part. In this context, Smalltalk is called the host language.
This results in a single code base for the whole application, better maintanability
and a consistent tool chain for the whole development team. Also, each team
member can take part in developing the whole system, instead of just a part of
it.

Implementing this concept appropriately requires at least the following func-
tionality. The client-side code has to be generated from the code written in the
host language. Then a special runtime environment has to be supplied on the
client; it has to provide all required means to execute the generated code. The
host language has to support full client-side functionality.

This paper gives a solution for the last requirement by defining concepts to
access JavaScript functionality in the Smalltalk programming language.

The mapping of language features is not straight forward. JavaScript and
Smalltalk have some major differences; for exmaple, they are based on entirely
different programming models and standard libraries. The main problem to over-
come is the fact, that JavaScript has a prototype-oriented inheritance model and
objects with dynamic properties called slots, while Smalltalk uses a strict class
based inheritance model. These and more differences are discussed in Section 2.

We have found the host language to be sufficient to express all necessary
client-side aspects.

We did not extend the host language by introducing a new compiler, as this
results in a new language mixing the two grammars, syntaxes and semantics. The
resulting language is hard to understand and does not eliminate the need to learn
both intermixed languages. Our approach is to limit required languages to one
well-known language with non-verbose syntax and an expressive programming
model.

For the solution presented by this paper, we map important JavaScript con-
cepts to the Smalltalk language, including it’s grammar, syntax and semantics.
The basic way to do this is to find counterparts in Smalltalk, that can be used
to express certain aspects of JavaScript.

Not every aspect has a feasible counterpart in Smalltalk. If there is no such
counterpart, the unmatched aspect cannot be implemented on the server. In-
stead, a complete API for that functionality must be added in form of an empty
library (also called a library stub). The methods of such a library document
the API, but don’t really implement the functionality (as it can only be imple-
mented on the client). At runtime, these methods will be overridden and the
functionality will be available for the translated code for the browser.

The paper is organized as follows. Section 2 discusses differences between
JavaScript and Smalltalk. Section 3 describes mappings of basic JavaScript con-
cepts, Section 4 describes mappings of more complicated and important concepts.
Section 5 gives details of the implementation of the presented mappings in Orca.
Section 6 describes and interprets an evaluation to show the quality of our ideas.
Section 7 lists several projects we share common ideas with and that inspirated
our solution. Section 8 gives a summary and a lookout for future work.

2 Differences between JavaScript and Smalltalk

To understand the problems of integrating JavaScript language features into
Smalltalk, it is important to know which aspects differentiate the two languages.

As pointed out in the introduction, the two languages are based on two very
distinct programming models[7] [9]. In JavaScript, each object is a complete
entity for itself, while in Smalltalk each object is an instance of a class and all of
it’s properties are defined by the class. In JavaScript, objects inherit from other
objects, while in Smalltalk classes inherit from other classes.

When comparing the appearance of the code, Smtalltalk is a much cleaner
language. Syntactical elements are limited to the most basic elements needed for
object orientation; JavaScript’s syntax includes a big amount of keywords, oper-
ators and artificial constructs, which can complicate the code comprehensibility.
Often, there can be surprising results, for example when the semantics of the
this keyword are not clear. This hinders less-than-expert programmers to write
complicated code, as unexpected behaviour arises quickly[1].

In comparison to JavaScript, Squeak Smalltalk includes a rich standard li-
brary. JavaScript’s standard library is rather small; developers have to use the
operators for most common tasks. To use a comfortable API for a problem like
iterating over objects, one has to find, include and learn a third party library.

Due to the it’s extensive standard library, Smalltalk produces cleaner and
more understandable code for most tasks, even without the help of additional
libraries; the example of handling and iterating collections is maybe the most
prominent one (listings 1.1 and 1.2).

for (var index = 0; index < anArray.length; index++) {
var element = anArray[index];
/* do something with element */

}

Listing 1.1. Iterating over an array in JavaScript

anArray do: [:item | " do something with element "]

Listing 1.2. Iterating over an array in Smalltalk

A final aspect for comparison are the development tools. In a Smalltalk image,
all tools are integrated and uniform. Many JavaScript related tools as well,
but they are not well integrated and a programmer has to learn the efficient

use of each tool seperately. Among other, a Smalltalk image provides a code-
browser and -editor, an object explorer, a debugger and a test runner with the
same design and perfectly integrated. To get similar functionality, a JavaScript
programmer has to use several programs, all with different user interfaces and
user experience.

2.1 Why Smalltalk?

The thoughts of Lukas Renggli and Tudor Girba [16] reflect greatly our thoughts
of why to choose Smalltalk as host language to integrate JavaScript into.

2.2 Why not JavaScript?

The Node.js framework! allows using JavaScript as server-side language. Thus,
developers could use Javascipt to program both the client- and the server-side.
The server runs a JavaScript virtual machine, which executes just the same code
as the client does.

Besides selecting Smalltalk as host language, we have also chosen to not
use JavaScript for all programming tasks of a web application. The main rea-
son are the results of the comparison between JavaScript and Smalltalk given
in this section and the thoughts of Renggli and Girba; but we also wanted to
avoid JavaScript. Generated JavaScript code can escape serious potential secu-
rity problems, that are injected, when developers write JavaScript by hand. A
study conducted by Yue and Wang shows, that this is the regular case[18]. Mar-
tin Johns lists many more JavaScript related threats and security problems[12].

We want to show that the client-side of web applications can be programmed
in a programming language other than JavaScript.

3 Mapping Basic Concepts

To enhance Smalltalk code with JavaScript concepts, we have to cover the basic
parts of the language.

The concepts discussed in the subsections below are inherent in most high
level object oriented programming languages, including JavaScript and Smalltalk.
Still, there are many details to notice and discuss. The main difference to over-
come is, that JavaScript syntax relies heavily on keywords and operators, while
Smalltalk syntax features (almost) nothing more than message sends. So we
have to assure, that for each basic operator in JavaScript, there is an equivalent
Smalltalk method on an appropriate class.

! http://www.nodejs.org/

http://www.nodejs.org/

3.1 Control Flow

JavaScript includes many keywords for control flow, which map directly to the
control flow concepts in Smalltalk. Whereas Smalltalk does not have opera-
tors for that task, but message sends, the possibilities are the same and even
extended. Here is an example mapping of basic control flow keywords to the
according message sends in Smalltalk (Table 1).

JavaScript keyword(s) Smalltalk message(s)
if, else #ifTrue:, #ifFalse:,
#ifTrue:ifFalse, #ifFalse:ifTrue:
switch, case, default #switch:default:
for #to:do:, #do:, #timesRepeat:
while #whileTrue:, #whileFalse:
return

Table 1. Mapping of control flow keywords

The for operator in JavaScript can express more than provided by just the
listed messages, but browsing the message protocols of for example BlockClosure
and Number will give all the functionality needed for typical programming.

However, there are keywords, that are not directly matchable to message
sends from the Smalltalk standard library; the most important one is continue.
Inside any JavaScript loop, the continue keyword quits the current inner-most
loop cycle and executes the next one. Smalltalk does not support that; continuing
to the next loop-cycle is only possible by letting the loop-block execute to it’s
end in a controlled fashion.

There is a very important difference between the return operator and the
4 of Smalltalk. The return operator returns from the current function, while ¢
returns from the current method, even if the current execution is inside several
block contexts. The only way to quit from the current block and not from the
method is to let it execute until it’s end. A JavaScript programmer has to get
accustomed to this difference.

3.2 Variables

Developers can declare, use and assign JavaScript variables anywhere in the
program code. They can also assign them before or without declaring them and
reference them before assigning anything to them. An unassigned variable has
the default value undefined.Smalltalk is much more explicit about variables —
each Smalltalk temporary variable has to be declared at the beginning of a block
or method, as well as each instance variable and the other types of Smalltalk
variables. Smalltalk variables have the default value nil.

JavaScript also has global variables. In code, they can be accessed directly,
when they are not shadowed by any temporary variable in any intermediate

scope. The variables are also available via the window keyword, which resolves to
a common object holding all of the globals.

Smalltalk supports a concept of globals, for example to access the common
Transcript object. However to access them and have the code compile properly,
they must be defined.

Although the client-side code might never be executed in the Smalltalk image,
it still has to compile to allow convenient development. Therefore it’s not feasible
to use this mechanism for accessing JavaScript globals. This is discussed in detail
in Section 4.3.

3.3 Primitive Types

JavaScript features three real primitive types: numbers, strings and booleans.
At some points, these types show behaviour differing from normal objects. Part
of that behaviour is not specified and depends on the browser. For example,
setting a slot of a string or number object is possible, but the value of the slot
will get lost when accessing the same slot again. Despite these inconsistencies,
primitive values can still be enhanced with additional functionality. This is done
by adding new functions to their prototype objects (accessed, for example, by
Number . prototype and String.prototype).

Contrary to all this, Smalltalk primitive types are normal objects like any
other. They can receive messages and nothing more. The primitive types of
Smalltalk are sufficient to map those of JavaScript; due to the extended standard
library they are even more powerful. But all the special behaviour inherent in
JavaScript has to be exposed explicitely, as it is not present in Smalltalk. A
programmer might want to explicitely access this behaviour; however, to support
browser independence and reduce error potential we consider it not necessary to
expose this functaionlity.

The JavaScript values null and undefined are not real primitive types, rather
just primitive values. Still, they are important and need to be mapped. The
Smalltalk value nil covers the JavaScript value null. But undefined has no such
equivalent. To solve this we propose creating an empty class named, for example,
Undefined, which evaluates to undefined on the client-side.

3.4 Operators

JavaScript has several groups of operators. The operators are divided in the
following categories:

Arithmetical operators

Assignment operators

String concatenation

— Comparison operators

Logical operators

Operators for bitwise manipulation

Similar to control flow (see Section 3.1), most of these operators have match-
ing counterparts in Smalltalk. As mentioned before, the Smalltalk versions are
all normal messages sent to objects. The common operators are all covered in
the method protocols of Magnitude, String, Boolean and their subclasses, some
are defined on Object. However, an important difference is the precedence of
arithmetic operators: while JavaScript executes arithmetical operations in their
correct mathematical order, Smalltalk’s binary messages are left-associative and
executed in the order from left to right. Still, the code 1 + 2 is valid for both
Smalltalk and JavaScript.

Again, there are JavaScript operators, that cannot be mapped directly. The
first one is the string concatenation. It’s behaviour is hard to understand and
inconsistent. It has no direct Smalltalk equivalent. Like with the primitive types,
we consider an explicit mapping unnecessary, as Smalltalk has a rich library of
string manipulation itself.

The other class of unmatchable operators are the assignment operators. They
perform an operation of some kind on a value and write the result back into the
same variable. For example a += 2 would store the result of a + 2 back into a.
The Smalltalk operator for this task is :=, the operation must be coded explicitely
(a := a + 2).

3.5 Exception Handling

Exception handling mechanisms can be found in both JavaScript and Smalltalk.
In JavaScript, any object can be treated as an exception and thrown. When using
a try-catch statement, the type of the exception to catch cannot be specified.
When only a certain kind of exception needs to be caught, the type (and/or
other properties) of the caught object must be checked explicitely; the object
may be thrown again, if it is not handled by the code-block that caught it.

Squeak Smalltalk defines many messages that can be sent to instances of
BlockClosure to constrain their execution. Only subclasses of Exception can be
thrown and caught. This is less flexible, but just as expressive as the JavaScript
approach. Custom subclasses of Exception or Error can wrap arbitrary objects.

So despite the differences, we don’t need to extend the Smalltalk exception
handling mechanism to map the one of JavaScript. However, we propose adding
convenience methods like #signalYourself in listing 1.3).

('Critical error, current state:', self state) signalYourself

Listing 1.3. Convenient way to throw an exception message

4 Mapping Complicated Concepts

The concepts discussed so far where basic language concepts of JavaScript.
For most of them, a matching Smalltalk equivalent can be found. The lan-
guage features presented in this section include fundamental differences between
JavaScript and Smalltalk and are not easily handled.

4.1 Functions

JavaScript’s functions are first class objects which can be created anonymously
and invoked. If a function is placed into a named slot of an object, it takes the
role of a method. Functions in slots can be inherited prototypically, deleted, and
copied into other slots, objects and variables.

The closest equivalent in Smalltalk to that are blocks (instances of
BlockClosure). They are first class objects as well and can be created, stored,
referenced and evaluated. However, contrary to JavaScript functions, Smalltalk
blocks are still different from methods. Methods are placed inside method dic-
tionaries of classes and changing a method of a class reflects on each instance
of that class. Developers cannot use blocks to achieve similar effects. Blocks are
mostly short living objects and cannot be used to replace the method of another
given object.

Another difference between JavaScript functions and Smalltalk blocks is that
JavaScript functions can be called with any number of parameters. Missing pa-
rameters are bound to the value undefined, additional parameters are ignored
and stay available over the arguments keyword. Consequently, in JavaScript there
is no way to check, how many parameters a function is actually expecting. Invok-
ing a block with the wrong number of parameters in Smalltalk leads to an excep-
tion and blocks respond their number of parameters on the message #numArgs.
An example using that possibility is the method #ifNotNil:. It evaluates the
block given as argument, if the receiver object is other than nil. If the block
takes one parameter, it is evaluated with the receiver as argument; if it does not
take arguments, it is evaluated without.

Furthermore, in JavaScript the value returned after evaluating the function
is the value given to the return operator. A Smalltalk block returns the value of
the last statement contained in it. This means, leaving the block spontaneously
without leaving the surrounding method is not possible.

These differences would not really affect using Smalltalk blocks to map
JavaScript functions. Table 2 gives examples of statements creating Smalltalk
blocks and their equivalent JavaScript counterparts. The JavaScript versions of
the statements are not the result of our Smalltalk-to-JavaScript translator. For
example the #+ message is mapped to JavaScript’s + operator for simplicity.

Smalltalk statement JavaScript statement
[:a]] function(a) {}
[:a:b] al function(a, b) { return a; }
[:a :b | lcl function(a, b) { var c;
c:=a+b. c] c =a+ b; return c; }
[:ta | a] value: 1 (function(a) { return a; })(1)
anObject functionAbc value: 1 value: 2| anObject.functionAbc(l, 2)

Table 2. Mapping of JavaScript functions

The last two examples in table 2 show how developers can invoke JavaScript
functions in Smalltalk code: the same way blocks are invoked in Smalltalk. The
Smalltalk way of invoking a block “value: 1 value: 2” is more verbose than the
JavaScript notation “(1, 2)”.

Given the described mappings, the basic concepts of JavaScript functions can
be used in Smalltalk code directly. A good Smalltalk-to-JavaScript translator and
a well set up client-side environment.

Using concepts which have no counterpart in existing Smalltalk funtionality
requires extending the API of Smalltalk blocks.

The new Keyword Functions in JavaScript can play the role of constructors.
Invoking a function using the new operator creates a new, empty object and
executes the function once, with the newly created object bound to the this
keyword. Additionally, the new object is set up to inherit prototypically from
the prototype-slot of the constructor function.

There is no equivalent procedure in Smalltalk, since there is no prototypical
inheritance. Objects cannot be created from blocks — just from classes, by cre-
ating an instance of them. Making this functionality available for client-side code
written in Smalltalk requires enhancement of the message-protocol of Smalltalk
blocks (the class BlockClosure).

Table 3 gives an example of how to use the new operator from within Smalltalk
code.

Smalltalk code ‘ JavaScript equivalent
[] jsNew new (function() {}) Q)
anyLibraryFunction jsNew: 123| new anyLibraryFunction(123)

[:a :b | self aSlot: a] new (function(a, b){
jsNew: 123 with: 'abc' |this.aSlot = a; }) (123, “abc”)
Table 3. Mapping of the new operator

In the Smalltalk image, there can be no real implementation of messages like
#jsNew. Adding methods for them can be fully omitted, as the code would still
be perfectly readable and compilable. However, we implemented signaling an
error state to provide more convenience for the programmer. Receiving an error
message like shown in listing 1.4 improves the ability to debug the application
in comparison to calling #doesNotUnderstand: with the erroneous message send.

This “empty” implementation of the method has to be replaced with the ac-
tual functionality, when the translated code is executed on the client. Section 5.1
describes how this is implemented in Orca.

'The message #jsNew can be used only on the client—side,
but has been called on the server!'

Listing 1.4. Example error message

10

The prototype Slot Convenient mapping of the new keyword enables to use
libraries, that provide their own constructor functions. But if the programmer
wants to use the prototypical inheritance of JavaScript, an important feature is
the prototype slot of function objects.

Settings this slot must be enabled through additional messages on the
BlockClosure class. Similar to the #jsNew implementation (Section 4.1) we pro-
pose a version in the Smalltalk image throwing understandable error messages;
the actual implementation is then hooked into the system at runtime on the
client-side.

These messages are named #prototype: and #prototype in the Orca imple-
mentation.

When developers use the #jsNew message to create an instance from a JavaScript
block, it is important, that the prototype slot has the same semantics like in
JavaScript.

4.2 Objects and Slots

As explained in the introduction, slots are named properties contained in JavaScript
objects. An important feature of JavaScript and it’s prototypical inheritance is
the creation of empty objects, filling any slot with any other object or value
and accessing any slot without an immediate error. Most JavaScript libraries
use these features, for example requiring a configuration object from the user.
That object can be filled with values in certain expected slots or just with any
number of values, that the library iterates over.

The Smalltalk syntax does not provide this possibility — the only thing that
can be done with an object is sending it a message. There is no convenient way
to access fields directly, like the dot-syntax in JavaScript (accessing slot s of
object obj with obj.s). Depending on the expected or needed functionality, we
propose several ways to handle this problem.

We have chosen the alternative implemented in Orca trading off between
flexibility and convenience.

One possibility is to allow any Smalltalk object to carry arbitrary JavaScript
slots (only on the client-side, or even inside the image itself). The other option is
to force the creation of explicit “slot objects”, that behave like JavaScript native
objects.

Targeting Arbitrary Slots for any Object It might be useful to allow any
object in the system (including instances of Number, Dictionary and BlockClosure)
to be able to contain additional slots. This would map the complete possibilities
of JavaScript.

The way to access these slots should in no way collide with the methods
provided by the classes of the objects. That means, simple getter-setter methods
(like #a and #a: for the slot named a) cannot be used, as they could shadow
actual methods #a and #a:, that an object would respond to otherwise. This

11

would for example disallow putting an object into the slot named first of any
instance of Collection.

To stay as close as possible to the JavaScript syntax used for slot-access, as
this might be more intuitive for JavaScript programmers, the mapping shown in
table 4 can be used.

Purpose ‘Message name‘ Smalltalk example ‘JavaScript version
Accessing a slot #,, obj ,, #a obj.a
Setting a slot #,, and #,= obj ,, #a ,= 1 obj.a =1

Invoking a slot function| #,, and #,! |obj ,, #a ,! { 1 } obj.a(l)
Table 4. Mapping of slot-access operators

Slot names are identified using symbols.

This mapping has several advantages. As slot names are written down as
Smalltalk symbols or strings, any JavaScript slot can bea accessed conveniently.
Slots with names, that are invalid Smalltalk selectors, can still be accessed. For
example the slot $ can be accessed using obj ,, #'$'. Also, the code has a similar
structure as JavaScript code, which supports JavaScript programmers in learning
the new language. Less important, the code is rather short.

However, this mapping has several disadvantages. The biggest one is, that
it is really unintuitive for Smalltalkers. Inside a Smalltalk code base, such code
looks cryptic, symbolic and unclean.

Some of the disadvantages can be avoided by modifying the mapping to the
one shown in table 5.

Purpose ‘ Message name ‘ Smalltalk example ‘J avaScript version
Accessing a slot #slotNamed: obj slotNamed: #a obj.a
Setting a slot #slot:be: obj slot: #a be: 1 obj.a =1
Invoking a slot function|#invoke:with:|obj invoke: #a with: { 1 } obj.a(1)

Table 5. More verbose mapping of slot-access operators

Although a bit more verbose, this syntax is much more readable and less
cryptic and symbolic than the first one.

However, both possibilities are not fully satisfying, as the code becomes either
long or hard to read.

Using Dedicated “Slot Objects” If there is no need to enable every regular
Smalltalk object to carry additional slots, the much simpler syntax in table 6
can be chosen.

Simple getter-setter pairs can be used to access slots. This is the default way
to set properties in Smalltalk and also really close to the JavaScript slot-access
notation.

12

Purpose ‘Smalltalk example‘JavaScript version
Accessing a slot obj a obj.a
Setting a slot obj a: 1 obj.a =1
Invoking a slot function| obj a value: 1 obj.a(1)

Table 6. Smalltalk-like mapping of slot-access operators

The main disadvantage of this approach is that slots with names not match-
ing legal Smalltalk selectors cannot be accessed directly. This is the case with
slot-names containing the character $ or _. They require using the #perform:
message to “emulate” sending a message called that way. For example access-
ing the slot $ is done with obj perform: #'$' and setting this same slot with
obj perform: #'$:'with: 1 (note the colon).

Also, as mentioned, this removes the possibility to put slots in instances of
Dictionary, BlockClosure or other classes (meaning loss of flexibility). However,
we consider this functionality as not necessary. Storing a slot in such a Smalltalk
object is only necessary to pass that object into a native JavaScript library. This
is discouraged, as such an object has no native JavaScript representation and
JavaScript libraries are not able to cooperate with such a “strange” object; they
usually expect regular JavaScript objects and values.

Object Literals An important JavaScript syntax element is the notation of
object literals. Since objects are frequently used as configuration-dictionaries
by libraries, this is important for developers. Listing 1.5 is an example for this
notation.

{ a: 1, b: 'hello' %}

Listing 1.5. Example for Javascropt object notation

This creates an object with the a and b slots set to the respective values.

An adequate replacement for this feature in Smalltalk syntax would be the
common way to declare a dictionary. For this, the notation of a dynamic array
filled with instances of Association is used (listing 1.6). The array has to be
“marked” in some way to distunguish it from ordinary array creation.

{ #a -> 1. #b -> 'hello' } asObject

Listing 1.6. Example for mapped object notation
To actually implement this, either a compiler extension—treating this syntacti-
cal construct specially and printing the JavaScript object literal directly—or a

correct implementation of the #asObject message is required. It can be added to
the class Array in the way described for the #jsNew message in Section 4.1.

More Slot Functionality Further slot related means of JavaScript are the
following:

1. Iterating over all slots of an object

13

2. Deleting a slot

For this we provide two further client-side-only methods called #al1SlotsDo:
and #deleteSlot:. Listing 1.7 shows how to use these methods.

obj allSlotsDo:
[:slotName | allSlots add: (obj perform: slotName)].

obj deleteSlot: #a.

Listing 1.7. Examples for other mapped slot-operations

The first statement collects all slot-values of obj into the collection allSlots.
The second statement simply deletes the slot named a in the object obj. This is
almost, but not completely, equivalent to setting the named slot to undefined.

4.3 Global Variables

As already mentioned in Section 3.2, JavaScript and Smalltalk both provide
global variables. Still, the two concepts cannot be mapped onto each other.
Global variables in Smalltalk have to be present during compile time of the
containing code. The client-side code however needs access to any global variable.
Variables, that are present in the browser, for example provided by an external
library, are not present in the Smalltalk image. Programmers would have to
manually add a wrapper for each global variable they want to use.

We solve this problem by adding a special class called Js, that acts like the
global namespace of JavaScript. Sending getter- and setter- messages to this
class means getting and settings global variables on client-side. For example, to
access and invoke the global function alert, the code in table 7 would be used.

Smalltalk ‘ JavaScript
Js alert value: 'hello'. ‘alert ("hello”) ;
Table 7. Invoking global alert function

Shortcuts In some cases, code written in the syntax proposed in the previous
sections is longer than the equivalent JavaScript code. This is especially the case
when accessing slots that are not named like legal Smalltalk selectors. Doing so
forces use of the #perform: method (see 4.2). Also, invoking functions is more
verbose due to the need to use the protocol of BlockClosure. A good example
for that is the frequently used jQuery? function $. Table 8 gives a comparison
between the Smalltalk and JavaScript code using that function.

Programmers should be able to write shorter and more Smalltalk-like code.
We allow this by providing shortcuts for global functions like $. These shortcuts

2 http://www.jquery.com/

http://www.jquery.com/

14

Smalltalk ‘ JavaScript
(Js perform: #'$'") value: '#elementA"$(” #elementA”)
Table 8. Invoking the jQuery function

can be added to the already existing special class Js. They can be implemented
in regulare client-side Smalltalk code and wrap the needed functionality. Note,
that this is not a necessity; it’s just for convenience in some rare circumstances.

For example the method Js class >> #@ can wrap the jQuery $ function
(listing 1.8).

@ jqueryString
"Provide a shortcut for the jQuery $ method."

1T (Js perform: #'$') value: jqueryString
Listing 1.8. Implementation of a shortcut for jQuery

A new comparison between the Smalltalk and JavaScript versions of a jQuery
call shows the difference (table 9).

Smalltalk ‘ JavaScript
Js @ '#elementA"$(” FelementA”)
Table 9. Invoking the jQuery function with a shortcut

5 Implementation

The concepts discussed in the previous sections of this paper were implemented
in the Orca web framework. An architectural description of Orca has been writ-
ten by Stephan Eckardt[19]. Hauke Klement describes Orca from a programmer’s
point of view[20] and Sebastian Woinar evaluates the Orca framework compar-
ing it with other web application frameworks[24]. Lauritz Thamsen writes on
the concepts of object-collaboration in Orca[22]. Some further implementation
details of Orca are closely related to the concepts discussed in this paper and
are presented in the following sections.

5.1 Client-side-only Code in Orca

To understand the following sections it is useful to know how Orca initializes
the JavaScript environment when a web application is started.

Figure 1 shows the data-flow sequence taking place when initializing the
system.

The scripts sent to the client in the last step contain most of the implemen-
tation of the concepts described in this paper. They are sent at the very end

15

to ensure, that they replace the code produced by the Smalltalk-to-JavaScript
compiler.

Client Server

ntations

]avascript—omy impleme
of Smalltalk. methods]

e I

Fig. 1. Sequence of system initialization

5.2 Boxing

The concepts to work with JavaScript objects (described in 4.1 and 4.2) require
a quite special implementation. As described, they rely on message-sends, which
result in slot-accesses. A regular JavaScript object does not understand these
messages (throwing an error like ”TypeError: Object xyz has no method 'abc').
Therefore, we need a wrapping object, that is able to understand them and
perform the required slot-accesses on the actual object. These “boxes” are cre-
ated automatically whenever a JavaScript object is created or enters the system
from outside. Figure 2 visualizes this concept: the squares in the “Libraries”
environment are regular JavaScript objects; upon entering the “Translated En-
vironment” (the part of the JavaScript runtime containing the code compiled
from Smalltalk), these objects are wrapped by “boxes” — normal Smalltalk
objects like the ones on the server.

This implementation requires a working implementation of the #doesNotUnderstand:
functionality of Smalltalk, as any possible message send must be processed.
Robert Strobl writes on the impementation of this and other Smalltalk concepts
in the Orca framework[21].

16

Not only JavaScript objects are held in boxes in Orca. Also all kinds of prim-
itive objects (strings, numbers, booleans) and functions follow that principle.

*

@
¢ ..

Translated
Libraries Environment

Client Server

¢

Fig. 2. Box-objects holding JavaScript native versions of themselves

5.3 Library Interoperability

A very important goal of the discussed concepts and the implementation in Orca
is a good interoperability with existing JavaScript libraries.

Implementing just the concepts allows us to use the JavaScript language
— but we could possibly put the JavaScript environment. Libraries cannot co-
operate with the objects created in the special runtime environment for the
translated code. Figure 3 illustrates that incompatibility: the “Translated Envi-
ronment” contains the same kind of objects as the server; they are different from
the objects in the rest of the JavaScript environment. For example, they contain
several meta-properties used to emulate Smalltalk concepts in the JavaScript en-
vironment. For similar purposes, they build up complex inheritence structures.
Strobl’s work describes this matter in detail.

If for example a Smalltalk String tries to cooperate with the native JavaScript
environment as-is, like attempting native string-concatenation, this could fail or
produce unwanted results.

Another example is the incopatibility between Smalltalk number objects and
JavaScript numbers. If a number has to be given as argument to a library, the
library has to receive an actual JavaScript number and not the Smalltalk object.

We use the principle of “boxing” to solve this problem as well. This means
each object in the runtime environment for translated code has a native repre-
sentation of itself, which is capable to cooperate with the rest of the JavaScript
environment.

Given these prerequisites, we only have to “box” and “unbox” the objects at
the correct places to always keep the right version of each object in it’s inherent
part of the system. The boxed version stays in the Translated Environment and
the unboxed version stays in the rest of the JavaScript environment. We hold a
link between the two to support object identity.

17

Translated

Libraries Environment

Client Server

Fig. 3. Passing an incompatible object into a JavaScript library wihtout unboxing

Figure 4 shows how an object is transformed, when crossing the border be-
tween the two parts.

Translated
Libraries Environment

Fig. 4. Boxing and unboxing of objects in the JavaScript environment

6 Evaluation

This section evaluates the concepts and their implementation presented in this
paper. As the main contribution is the quality of client-side code and the pos-
sibilities to interact with JavaScript libraries, the evaluation will focus on these
two aspects.

The Orca framwork is compared to two similar systems. The two selected
reference frameworks both include a Smalltalk-to-JavaScript compiler like Orca,
and also feature programming client-side JavaScript code in Smalltalk.

For the evaluation, a small client-side application is programmed using all
of the three compared frameworks. Important code fragments of the different

18

implementations are shown and compared. The application is constructed to
focus on the functionality mentioned above and explicitely does not contain the
following parts:

— Communication between client and server
— Executing code on the server
— Sending HTML-code to the client (the page is set up with JavaScript)

The following two sections give short descriptions of two related systems
(6.1 and 6.2). The next section (6.3) describes the chosen example application.
After that (6.4), selected code listings are presented and compared; aspects, that
cannot be demonstrated by the code, are explained. An evaluation result and
summary is given in 6.5.

6.1 Jtalk

Jtalk by Nicolas Petton® 4 is an implementation of Smalltalk, that runs on
top of the JavaScript runtime. The Smalltalk code is completely compiled to
JavaScript. However, there are differences to other Smalltalk implementations
[14]. For example, many collection-classes are not supported; instead, Array is
used as the size of an Array in Jtalk is dynamic. The differences originate in the
differences between Smalltalk and JavaScript.

Writing client-side code in Jtalk is described in more detail, when the code of
the example application is shown. However, when building an application with
Jtalk (including not only JavaScript functionality), one can take advantage of
the additional framework functionality provided by Jtalk, that is not used in
this evaluation.

6.2 SWT

The Smalltalk Web Toolkit (SWT)[2] is a framework for web applications. It in-
cludes a Smalltalk-to-JavaScript compiler, but also the infrastructure needed for
proper web development; for example, synchronization of data between multiple
clients.

The compiler of SWT (named St2Js[3]) tries to use as many JavaScript native
code elements as possible, thus producing relatively fast JavaScript code. How-
ever, this reduces the flexibility of Smalltalk code; for example the #== message
is translated to JavaScript’s === operator, instead of being polymorphic.

6.3 Example application

The example application is a simple, graphical client-side-only application. Small,
moving balls are painted inside a filled rectangle representing a movement area.

3 http://github.com/NicolasPetton
4 http://github.com/NicolasPetton/jtalk

http://github.com/NicolasPetton
http://github.com/NicolasPetton/jtalk

19

They bounce off the sides and a button can be clicked to add a new ball to the
field.

An HTML5 canvas® and an arbitrary JavaScript library are used to paint the
field and the balls. The JavaScript setInterval function generates the movement
by invoking a stepping method in regular intervals. Figure 5 shows the classes
used to implement this application.

CanvasWorld CanvasShape CanvasCircle
bounds canvas position
elements —> graphics K}—{ radius

color
step
startStepping drawOn: 4
% Ball
BallCanvas| 1 elements 0.* speed.
direction
addBall bounceOff
step

Fig. 5. Class diagram of the example application

The application starts off in an empty HTML-page and adds all DOM-
elements it needs dynamically. The following elements are added directly to
the body of the HTML-page:

— An HTMLS5 canvas element
— An input element (the button)

The library used to paint on the canvas is the Canvas Toolkit®. We used a
part of the provided functionality, mainly to draw the rectangles and circles.

After the elements have been created and the library has been initialized, a
function is registered with a call to setInterval. In a regular interval, the appli-
cation paints a filled rectangle to delete everything on the canvas; the position
of the balls changes based on the balls’ current direction and speed, they bounce
off the wall if necessary and are painted afterwards.

This application demonstrates all typical functionality needed when program-
ming client-side JavaScript:

— Working with JavaScript native objects and functions
— Using HTML GUI-elements
— Using native JavaScript libraries

® http://www.w3schools.com/html5/html5_canvas.asp
S https://canvastoolkit.codeplex.com/

http://www.w3schools.com/html5/html5_canvas.asp
https://canvastoolkit.codeplex.com/

20

6.4 Comparison
The example application has the following important pieces of code:

— The initialization sequence
e Create the canvas-element
e Create a JavaScript-instance of ctk.Graphics
e Set up the movement with a call to setInterval
e Create the button
— The code to draw a circle on the canvas

The following sections show the according code lines written for the three
different systems.

The listings don not contain the actual code for the three implementations,
rather a condensation of the most interesting pieces. The lines are listed in the
same order as shown in the structure above.

For all three implementations, the invokation of self class canvasCode re-
turns the piece of HTML-code shown in listing 1.9.

'<canvas

id="ballCanvas” width="400"” height="300"
style="background—color: #f{fffff; position: relative;
border: solid 1px #000000;” >

</canvas>'

Listing 1.9. HTML-code for an HTML5-canvas-element

This HTML-code is added to the HTML-tree to create the required canvas-
element.

Jtalk The main way to write client-side code in Jtalk is the use of inline
JavaScript code with the syntax shown in listing 1.10.

smalltalk statements...
abc := {' javascript statements '}.
smalltalk statements...

Listing 1.10. Inline JavaScript syntax of Jtalk
Jtalk provides wrapper-libraries for the following functionality:

— Setting up the DOM using a HTML-canvas object
— Drawing on an HTML5-canvas
— The jQuery library

These wrappers are implemented using the inline-syntax shown above.

Listing 1.11 shows the code from the example application for Jtalk.
BallCanvas >> #renderOn: html

html input onClick: [self addBall 1].

BallCanvas >> #initialize

21

| canvasCode canvas intervalAction |

canvasCode := self class canvasCode.
{' document.body.innerHTML += canvasCode '}.
canvas := {' document.getElementBylId(” ballCanvas”) '}.

self canvas: canvas.

self graphics: {' new ctk.Graphics(canvas) '}.
intervalAction := [self step].

{' setInterval(function(e){intervalAction(e, self), 3) '}.

CanvasCircle >> #drawOn: graphics
| color positionX positionY radius|
color := self color
{' aGraphics.setColor (color); '}.
positionX := self position x.
positionY := self position y.
radius := self radius.
{' graphics. fillCircle (positionX , positionY , radius); '}.

Listing 1.11. Example application for Jtalk

Jtalk provides the #renderOn: method to access an HTML-canvas object (sim-
ilar to Seaside). The button is created using this functionality.

The rest of the initialization sequence is in the BallCanvas >> #initialize
method. First, the HIML-snippet provided by self class canvasCode is added
to body.innerHTML. Note, that the result of the self class canvasCode call is
stored in a local variable first. This is done to avoid calling Smalltalk meth-
ods inside the inline JavaScript code. Doing so would mean using the mangled
function-names and result in the line shown in listing 1.12 (note the underscores).

{' body.innerHTML += self. _class ()._canvasCode() '}.

Listing 1.12. Inline JavaScript code with mangled function names

As the rules of the mangling-mechanism are not always clear, this was avoided.

Next, the created canvas-element is acquired. Again, this is done using inline
JavaScript code with a call to getElementById. The result is stored in the local
variable canvas to use it in the constructor call to ctk.Graphics, which initializes
the canvas library.

To implement a call to setInterval, the block to be called (intervalAction)
is created first. setInterval is then invoked with an anonymous function, which
again invokes the intervalAction block. This contstruct is needed to invoke a
Smalltalk block from the inline JavaScript code, because the block-invokation
requires the correct self value.

To draw a circle on the canvas, the functions of the graphics object are called
using inline JavaScript. The parameter-values are stored into local variables
again.

SWT Contrary to Jtalk, SWT does not rely solely on JavaScript inline code (it
is provided nevertheless).

22

In SWT, the mapping from Smalltalk to JavaScript datatypes is very di-
rect. This means, for example, Smalltalk strings are compiled to real JavaScript
strings. Many message-invokations are compiled to the according JavaScript op-
erators, like the messages #== and #+.

SWT provides several key messages, that are compiled directly to JavaScript
object operations; these are shown in table 10).

Smalltalk code ‘J avaScript equivalent
a jsSet: 'b'to: ¢ a.b =c
a jsGet: 'b' a.b
a jsPerform: 'b'with: 123 a.b(123)
self jsLiteral: 'alert(1)' alert(1)
a jsNew: 'b'with: ¢ new a.b(c)

Table 10. Messages for JavaScript object manipulation in SWT

These messages provide all the functionality needed to write the example
application (shown in listing 1.13). In particular, the #jsLiteral: method gives
the only access to global variables.

BallCanvas >> #initialize

| body |

body := self jsLiteral: 'document.body'.

body

jsSet: 'innerHTML'

to: (body jsGet: 'innerHTML'), self class htmlCode.

self canvas: (

(self jsLiteral: 'document')
jsPerform: 'getElementByld'
with: 'ballCanvas');

self graphics: (

(self jsLiteral: 'ctk')
jsNew: 'Graphics'
with: self canvas);

(self jsLiteral: 'window')
jsPerform: 'setInterval'
with: [self step] with: 3.

self rootWidget add:

SWTButton
caption: 'Add Ball'
onClick: [self addBall 1].

CanvasCircle >> #drawOn: graphics
graphics jsPerform: 'setColor' with: self color.
graphics jsPerform: 'fillCircle'
with: self position x
with: self position y

23

with: self radius.

Listing 1.13. Example application for SWT

Using the messages shown in table 10, the implementation of the initializa-
tion sequence is pretty straght forward. First the innerHtml property of body
is concatenated with self class htmlCode and written back. Then the created
canvas-element is retrieved using the getElementById function of document; an in-
stance of ctk.Graphics is created using the #jsNew: message and the movement
is set up passing a simple block into the setInterval function.

The button is realized using the widget-library of SWT. It contains wide
support for most HTML elements, wrapped in a Smalltalk API. The widgets are
implemented using the means listed in table 10.

Drawing the circle is done using the #jsPerform: message; the resulting code
is self explaining.

Orca Orca implements the client-side coding concepts described in this paper.
These means are used to implement the example application for the Orca system
(listing 1.14).

BallCanvas >> #initialize
Js Document body innerHTML:

Js Document body innerHTML, self class canvasCode.
self canvas:

(Js Document getElementById value: #ballCanvas).
self graphics: (Js Global ctk Graphics jsNew: self canvas).
self add: (

OrcaButton new

text: 'Add Ball';
onClickDo: [self addBall];
yourself).
Js Global setInterval value: [self step] value: 3.

CanvasCircle >> #drawOn: graphics
graphics setColor value: self color.
graphics fillCircle

value: self position x
value: self position y
value: self radius.

Listing 1.14. Example application for Orca

First, the code from self class canvasCode is appended to Js Document body
innerHTML. Then the created element is fetched using the getElementById function
and a new instance of Js Global ctk Graphics is created. The button is realized
using an OrcaButton, which is a simple wrapper around an HTML-input element,
providing a Smalltalk-like API. The same could have been realized without this
class, using plain JavaScript.

The #drawOn: of CanvasCircle calls the two required JavaScript-functions of
the graphics object. As parameters, values taken from self are passed directly.

24

6.5 Evaluation Results

The presented evaluation is cannot be conducted on pure objective basis. Choos-
ing the “best” source code depends on personal style and real metrics are hard
to define.

However, we tried to identify the aspects that are focused by this evaluation:

— The code should resemble regular Smalltalk code as closely as possible
— The code should be maintainable, short and understandable

The coding style that fulfills these requirements is best fit to be used in
an actual developer team. It should not be very different from the rest of the
application code to avoid the feeling of two different programming languages and
frequent “context switches”. A code syntax, that is readable and maintainable
in general, greatly supports developers in producing good code. We think, that
in the case of Smalltalk the second point is implied by the first.

Based on these values we think, that the code produced for Orca stands out
against the two compared systems. The following are the two most important
arguments:

— There is no need for inline JavaScript code
— Names of slots are not written as string literals; everything is expressed using
messages in Smalltalk style

Negative aspects about the code written for Orca are the frequent occurence
of the class Js and the lacking support of inline code whatsoever.

7 Related Work

7.1 HOP

HOPJ[17] is a programming language for web applications. The language is based
on Scheme[6] but not fully compatible with it; however, HOP code can be written
in clean Scheme. The HOP language has many similiarties with Orca and the
concepts described in this paper. As related work for this paper, the most relevant
part is a Scheme-to-JavaScript compiler called Scm2Js[13]. The compiler does
not compile pure Scheme, but has several extensions simplifying the syntax to
access JavaScript from Scheme. The result is clean (pseudo) Scheme code.

Contrary to our approach, objects and data structures of Scheme are mapped
directly to JavaScript counterparts, as the two sides are considered close enough
to each other, JavaScript being derived from Scheme.

Orca on the other hand uses wrapper objects everywhere to combine full
Smalltalk and JavaScript functionality (see Section 4).

Another difference is, that the Scm2Js compiler does not care much about
the cleanness of the produced code, while the Orca’s compiler does. Lars Wasser-
mann writes about Orca compiler|[23].

25

7.2 GWT

The Google Web Toolkit” (documented in [5]) is a Java framework for writing
web applications. As an important part, it includes a sophisticated Java-to-
JavaScript compiler, that can produce optimized code for each browser. GWT
also includes many other functionality needed for a web application, like a com-
munication layer.

The way client-side code is written for GWT is quite different from Orca. The
root of the difference probably lies in the difference between Java and Smalltalk
— Java is statically typed, while Smalltalk is not. To use existing JavaScript
libraries in GWT, a wrapper or even a full port of the library is needed as a
Java API. For example, the full jQuery library has been reimplemented in GWT,
called GwtQuery®. The JavaScript Native Interface (JSNI) of GWT allows im-
plementing whole methods in real JavaScript code; accessing JavaScript from
Java code is not supported. GwtQuery has been implemented using JSNI.

Writing such wrappers is not necessary for accessing arbitrary libraries from
Orca, where just any object in the JavaScript environment can be accessed from
the Smalltalk code. When using GWT, a client-side programmer has to use the
widgets and APIs provided by GWT, while in Orca developers can access any
third-party library.

7.3 SWT

The Smalltalk Web Toolkit[2] has been presented in the evaluation in Section 6.2.
Being a system, that uses Smalltalk to program the client-side, it has many
similarities with Orca. Regarding the client-side code, SWT uses special messages
to work with JavaScript objects (like the concept described in Section 4.2),
resulting in a more powerful, but also more verbose syntax; we chose a different
approach and allow slot-accesses only on explicit JavaScript objects.

7.4 Jtalk

Jtalk[14] has been presented in Section 6.1. It is a client-side only Smalltalk
system, also providing a Smalltalk-to-JavaScript compiler. JavaScript is pro-
grammed solely using inline JavaScript code, resulting in a totally different pro-
gramming experience compared to Orca, wich allows using pure Smalltalk code
to handle all tasks.

7.5 Language-oriented Programming

Language-oriented programming is a paradigm stating, that each problem should
be solved and each solution expressed in the best-fitting language[15]. Such a
language is called a Domain Specific Language (DSL) [4]. Humm and Engelschall

" http://code.google.com/webtoolkit/
8 http://code.google.com/p/gwtquery/

http://code.google.com/webtoolkit/
http://code.google.com/p/gwtquery/

26

have described the concept of DSL Stacking[10]. This concept integrates DSLs
directly into a basic host language. To describe a specific DSL, it is based upon
an already existing DSL or the host language itself.

This approach benefits the goals pursued in this paper. Although we did not
implement the DSL stacking principle, we still integrated the internal DSL of
JavaScript inside the Smalltalk base language. Following the ideas of Humm and
Engelschall would have probably made our implementation simpler.

8 Conclusion

Writing the client-side code of a web application is a frequent and important
task nowadays. The ideas presented in this paper show, that this task can be
handled using an arbitrary, object-oriented programming language. In particular
we demonstrated how to use the full extent of the JavaScript programming
language in the host language Smalltalk.

We have shown, that the presented concepts are feasible and the resulting
client-side code is maintainable and looks just like normal Smalltalk code.

As the Web and related web technologies evolve, it is important to apply
the experience collected in server-side programming to the client-side also. To
produce structured and maintainable not only on the server- but also on the
client-side, any programming language of choice must be usable as host language
for client-side code.

Although we concentrated on using Smalltalk as host language, many of the
described ideas are applicable for any object-oriented programming language.
In the future, more and more of these languages should be equipped with the
possibility to express client-side code.

References

1. Crockford, D.: JavaScript: The Good Parts. O’Reilly Media, Inc. (2008)

2. Deck, D.: Introduccin a smalltalk web toolkit (swt) (span-
ish only) (Jun 2011), http://ceibo.wordpress.com/2008/01/06/
introduccion-a-smalltalk-web-toolkit-swt/

3. Deck, D.. St2js - traductor de smalltalk a javascript (spanish
only) (Jun 2011), http://diegogomezdeck.blogspot.com/2006/07/
st2js-traductor-de-smalltalk.html

4. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated
bibliography. SIGPLAN Not. 35, 26-36 (June 2000)

5. Dewsbury, R.: Google Web Toolkit Applications. Addison-Wesley Professional, 1
edn. (Dec 2007)

6. Dybvig, R.K.: The Scheme Programming Language, 4th Edition. The MIT Press,
4th edn. (2009)

7. Ecma-262: Ecmascript language specification (dec 1999), http://www.
ecma-international.org/publications/standards/Ecma-262.htm

8. Flanagan, D.: JavaScript: The Definitive Guide. O’Reilly Media, Inc. (2006)

http://ceibo.wordpress.com/2008/01/06/introduccion-a-smalltalk-web-toolkit-swt/
http://ceibo.wordpress.com/2008/01/06/introduccion-a-smalltalk-web-toolkit-swt/
http://diegogomezdeck.blogspot.com/2006/07/st2js-traductor-de-smalltalk.html
http://diegogomezdeck.blogspot.com/2006/07/st2js-traductor-de-smalltalk.html
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm

10.

11.

12.

13.

14.

15.

16.

17.

18.

27

Goldberg, A.: SMALLTALK-80: the interactive programming environment.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1984)

Humm, B.G., Engelschall, R.S.: Language-oriented programming via dsl stacking.
In: Jos Cordeiro, Maria Virvou, B.S. (ed.) Proceedings of the 5th International
Conference on Software and Data Technologies. ICSOFT 2010, vol. 2, pp. 279-287
(July 2010)

Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., Kay, A.: Back to the future: the
story of squeak, a practical smalltalk written in itself. In: Proceedings of the 12th
ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications. pp. 318-326. OOPSLA '97, ACM, New York, NY, USA (1997)
Johns; M.: On javascript malware and related threats. Journal in Computer Virol-
ogy 4, 161-178 (2008), 10.1007/s11416-007-0076-7

Loitsch, F., Serrano, M.: Hop client-side compilation (Jun 2011), http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.107.5025&rep=
repl&type=pdf

Petton, N.: Jtalk homepage and documentation (Jun 2011), http://
jtalk-project.org/

Pickering, R.: Language-oriented programming. In: Foundations of F#, pp. 271-
297. Apress (2007)

Renggli, L., Girba, T.: Why smalltalk wins the host languages shootout. In: Pro-
ceedings of the International Workshop on Smalltalk Technologies. pp. 107-113.
IWST 09, ACM, New York, NY, USA (2009)

Serrano, M.: Hop: an environment for developing web 2.0 applications. In: Pro-
ceedings of the 2007 International Lisp Conference. pp. 6:1-6:1. ILC ’07, ACM,
New York, NY, USA (2009)

Yue, C., Wang, H.: Characterizing insecure javascript practices on the web. In:
Proceedings of the 18th international conference on World wide web. pp. 961-970.
WWW 09, ACM, New York, NY, USA (2009)

Bachelor Theses

19.

20.

21.

22.

23.

24.

Eckardt, S.: An Architecture Overview of the Orca Web Application Framework.
Bachelors thesis, Hasso Plattner Institute for Software Systems Engineering (2011)
Klement, H.: The Development Process with Orca. Bachelors thesis, Hasso Plattner
Institute for Software Systems Engineering (2011)

Strobl, R.: Implementation of Smalltalk Language Features in JavaScript. Bache-
lors thesis, Hasso Plattner Institute for Software Systems Engineering (2011)
Thamsen, L.: Object Collaboration in the Orca Web Framework. Bachelors thesis,
Hasso Plattner Institute for Software Systems Engineering (2011)

Wassermann, L.: Translating Smalltalk to JavaScript. Bachelors thesis, Hasso Plat-
tner Institute for Software Systems Engineering (2011)

Woinar, S.: Comparing Frameworks for Web Application Development. Bachelors
thesis, Hasso Plattner Institute for Software Systems Engineering (2011)

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.107.5025&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.107.5025&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.107.5025&rep=rep1&type=pdf
http://jtalk-project.org/
http://jtalk-project.org/

	Integrating JavaScript Language Features into Smalltalk
	Introduction
	Differences between JavaScript and Smalltalk
	Why Smalltalk?
	Why not JavaScript?

	Mapping Basic Concepts
	Control Flow
	Variables
	Primitive Types
	Operators
	Exception Handling

	Mapping Complicated Concepts
	Functions
	The new Keyword
	The prototype Slot

	Objects and Slots
	Targeting Arbitrary Slots for any Object
	Using Dedicated Slot Objects
	Object Literals
	More Slot Functionality

	Global Variables
	Shortcuts

	Implementation
	Client-side-only Code in Orca
	Boxing
	Library Interoperability

	Evaluation
	Jtalk
	SWT
	Example application
	Comparison
	Jtalk
	SWT
	Orca

	Evaluation Results

	Related Work
	HOP
	GWT
	SWT
	Jtalk
	Language-oriented Programming

	Conclusion
	References

